Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 14: 1151926, 2023.
Article in English | MEDLINE | ID: covidwho-2306444

ABSTRACT

Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.


Subject(s)
COVID-19 , Thrombosis , Humans , Thrombosis/drug therapy , Thrombosis/etiology , Thromboinflammation , Inflammation/drug therapy , Cathelicidins
2.
Front Immunol ; 13: 1008463, 2022.
Article in English | MEDLINE | ID: covidwho-2198868

ABSTRACT

Background: A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods: We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results: The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions: The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.


Subject(s)
COVID-19 , beta-Defensins , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antimicrobial Cationic Peptides/metabolism , beta-Defensins/genetics , beta-Defensins/metabolism , COVID-19/genetics , Cathelicidins
3.
Front Immunol ; 13: 880961, 2022.
Article in English | MEDLINE | ID: covidwho-1933665

ABSTRACT

COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet ß-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.


Subject(s)
COVID-19 , Animals , Antimicrobial Cationic Peptides , Antimicrobial Peptides , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Cathelicidins
4.
Cell Mol Life Sci ; 79(6): 309, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1919755

ABSTRACT

Blood clot formation induced by dysfunctional coagulation is a frequent complication of coronavirus disease 2019 (COVID-19) and a high-risk factor for severe illness and death. Neutrophil extracellular traps (NETs) are implicated in COVID-19-induced immunothrombosis. Furthermore, human cathelicidin, a NET component, can perturb the interaction between the SARS-CoV-2 spike protein and its ACE2 receptor, which mediates viral entry into cells. At present, however, the levels of cathelicidin antimicrobial peptides after SARS-CoV-2 infection and their role in COVID-19 thrombosis formation remain unclear. In the current study, we analyzed coagulation function and found a decrease in thrombin time but an increase in fibrinogen level, prothrombin time, and activated partial thromboplastin time in COVID-19 patients. In addition, the cathelicidin antimicrobial peptide LL-37 was upregulated by the spike protein and significantly elevated in the plasma of patients. Furthermore, LL-37 levels were negatively correlated with thrombin time but positively correlated with fibrinogen level. In addition to platelet activation, cathelicidin peptides enhanced the activity of coagulation factors, such as factor Xa (FXa) and thrombin, which may induce hypercoagulation in diseases with high cathelicidin peptide levels. Injection of cathelicidin peptides promoted the formation of thrombosis, whereas deletion of cathelicidin inhibited thrombosis in vivo. These results suggest that cathelicidin antimicrobial peptide LL-37 is elevated during SARS-CoV-2 infection, which may induce hypercoagulation in COVID-19 patients by activating coagulation factors.


Subject(s)
Antimicrobial Cationic Peptides , COVID-19 , Thrombosis , Blood Coagulation Factors , COVID-19/complications , Fibrinogen , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Thrombosis/virology , Cathelicidins
5.
Proteins ; 90(5): 1029-1043, 2022 05.
Article in English | MEDLINE | ID: covidwho-1826108

ABSTRACT

A multi-pronged approach with help in all forms possible is essential to completely overcome the Covid-19 pandemic. There is a requirement to research as many new and different types of approaches as possible to cater to the entire world population, complementing the vaccines with promising results. The need is also because SARS-CoV-2 has several unknown or variable facets which get revealed from time to time. In this work, in silico scientific findings are presented, which are indicative of the potential for the use of the LL-37 human anti-microbial peptide as a therapeutic against SARS-CoV-2. This indication is based on the high structural similarity of LL-37 to the N-terminal helix, with which the virus interacts, of the receptor for SARS-CoV-2, Angiotensin Converting Enzyme 2. Moreover, there is positive prediction of binding of LL-37 to the receptor-binding domain of SARS-CoV-2; this is the first study to have described this interaction. In silico data on the safety of LL-37 are also reported. As Vitamin D is known to upregulate the expression of LL-37, the vitamin is a candidate preventive molecule. This work provides the possible basis for an inverse correlation between Vitamin D levels in the body and the severity of or susceptibility to Covid-19, as widely reported in literature. With the scientific link put forth herein, Vitamin D could be used at an effective, medically prescribed, safe dose as a preventive. The information in this report would be valuable in bolstering the worldwide efforts to eliminate the pandemic as early as possible.


Subject(s)
COVID-19 Drug Treatment , Cathelicidins , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vitamin D
6.
Nutrients ; 13(11)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1512522

ABSTRACT

BACKGROUND: We aimed to establish an acute treatment protocol to increase serum vitamin D, evaluate the effectiveness of vitamin D3 supplementation, and reveal the potential mechanisms in COVID-19. METHODS: We retrospectively analyzed the data of 867 COVID-19 cases. Then, a prospective study was conducted, including 23 healthy individuals and 210 cases. A total of 163 cases had vitamin D supplementation, and 95 were followed for 14 days. Clinical outcomes, routine blood biomarkers, serum levels of vitamin D metabolism, and action mechanism-related parameters were evaluated. RESULTS: Our treatment protocol increased the serum 25OHD levels significantly to above 30 ng/mL within two weeks. COVID-19 cases (no comorbidities, no vitamin D treatment, 25OHD <30 ng/mL) had 1.9-fold increased risk of having hospitalization longer than 8 days compared with the cases with comorbidities and vitamin D treatment. Having vitamin D treatment decreased the mortality rate by 2.14 times. The correlation analysis of specific serum biomarkers with 25OHD indicated that the vitamin D action in COVID-19 might involve regulation of INOS1, IL1B, IFNg, cathelicidin-LL37, and ICAM1. CONCLUSIONS: Vitamin D treatment shortened hospital stay and decreased mortality in COVID-19 cases, even in the existence of comorbidities. Vitamin D supplementation is effective on various target parameters; therefore, it is essential for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Vitamin D/administration & dosage , Antimicrobial Cationic Peptides/blood , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , COVID-19/complications , COVID-19/mortality , Dietary Supplements , Gene Expression Regulation/drug effects , Humans , Intercellular Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interferon-gamma/blood , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-1beta/blood , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Nitric Oxide Synthase Type II/blood , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Prospective Studies , Retrospective Studies , Vitamin D/blood , Vitamin D/pharmacology , Vitamins/administration & dosage , Vitamins/pharmacology , Cathelicidins
7.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438528

ABSTRACT

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Subject(s)
Autoimmunity , COVID-19/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunity, Humoral , Inflammation , Neutrophils/immunology , Antibodies, Antinuclear , Antimicrobial Cationic Peptides/blood , Autoantibodies/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/pharmacology , Flow Cytometry , Granulocytes/metabolism , HMGB1 Protein/blood , Healthy Volunteers , Humans , Microscopy, Confocal , Monocytes/cytology , Neutrophils/cytology , SARS-CoV-2 , Ubiquitins/pharmacology , Cathelicidins
8.
Ital J Dermatol Venerol ; 156(3): 366-373, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1207967

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become pandemic on March 11th, 2020. COVID-19 has a range of symptoms that includes fever, fatigue, dry cough, aches, and labored breathing to acute respiratory distress and possibly death. Health systems and hospitals have been completely rearranged since March 2020 in order to limit the high rate of virus spreading. Hence, a great debate on deferrable visits and treatments including phototherapy for skin diseases is developing. In particular, as regards phototherapy very few data are currently available regarding the chance to continue it, even if it may be a useful resource for treating numerous dermatological patients. However, phototherapy has an immunosuppressive action possibly facilitating virus infection. In the context of COVID-19 infection risk it is important to pointed out whether sunlight, phototherapy and in particular ultraviolet radiation (UV-R) constitute or not a risk for patients. In this review we aimed to focus on the relationship between UV-R, sunlight, phototherapy, and viral infections particularly focusing on COVID-19.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/radiation effects , Sunlight , Ultraviolet Rays , Vitamin D/physiology , Adaptive Immunity/radiation effects , Animals , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/physiology , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Humans , Immunity, Innate/radiation effects , Immunosuppression Therapy , Interleukin-6/blood , Pathogen-Associated Molecular Pattern Molecules , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Skin Diseases/radiotherapy , Sunlight/adverse effects , Toll-Like Receptors/physiology , Ultraviolet Rays/adverse effects , Ultraviolet Therapy/adverse effects , Viruses/radiation effects , Vitamin D/biosynthesis , Vitamin D/therapeutic use , Cathelicidins
9.
ACS Infect Dis ; 7(6): 1545-1554, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1182792

ABSTRACT

SARS-CoV-2 infection begins with the association of its spike 1 (S1) protein with host angiotensin-converting enzyme-2 (ACE2). Targeting the interaction between S1 and ACE2 is a practical strategy against SARS-CoV-2 infection. Herein, we show encouraging results indicating that human cathelicidin LL37 can simultaneously block viral S1 and cloak ACE2. LL37 binds to the receptor-binding domain (RBD) of S1 with high affinity (11.2 nM) and decreases subsequent recruitment of ACE2. Owing to the RBD blockade, LL37 inhibits SARS-CoV-2 S pseudovirion infection, with a half-maximal inhibitory concentration of 4.74 µg/mL. Interestingly, LL37 also binds to ACE2 with an affinity of 25.5 nM and cloaks the ligand-binding domain (LBD), thereby decreasing S1 adherence and protecting cells against pseudovirion infection in vitro. Intranasal administration of LL37 to C57 mice infected with adenovirus expressing human ACE2 either before or after pseudovirion invasion decreased lung infection. The study identified a versatile antimicrobial peptide in humans as an inhibitor of SARS-CoV-2 attachment using dual mechanisms, thus providing a potential candidate for coronavirus disease 2019 (COVID-19) prevention and treatment.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , COVID-19 , Spike Glycoprotein, Coronavirus , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/genetics , Cathelicidins
10.
Expert Rev Anti Infect Ther ; 19(10): 1205-1217, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180416

ABSTRACT

Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19.Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained.Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemistry , COVID-19/prevention & control , Cathelicidins/therapeutic use , Computer Simulation , Defensins/therapeutic use , Hepcidins/therapeutic use , Humans , Lactoferrin/therapeutic use , Melitten/therapeutic use , Molecular Structure , Peptidomimetics/therapeutic use , SARS-CoV-2 , Viral Structures
11.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1154456

ABSTRACT

Bats are unique in their potential to serve as reservoir hosts for intracellular pathogens. Recently, the impact of COVID-19 has relegated bats from biomedical darkness to the frontline of public health as bats are the natural reservoir of many viruses, including SARS-Cov-2. Many bat genomes have been sequenced recently, and sequences coding for antimicrobial peptides are available in the public databases. Here we provide a structural analysis of genome-predicted bat cathelicidins as components of their innate immunity. A total of 32 unique protein sequences were retrieved from the NCBI database. Interestingly, some bat species contained more than one cathelicidin. We examined the conserved cysteines within the cathelin-like domain and the peptide portion of each sequence and revealed phylogenetic relationships and structural dissimilarities. The antibacterial, antifungal, and antiviral activity of peptides was examined using bioinformatic tools. The peptides were modeled and subjected to docking analysis with the region binding domain (RBD) region of the SARS-CoV-2 Spike protein. The appearance of multiple forms of cathelicidins verifies the complex microbial challenges encountered by these species. Learning more about antiviral defenses of bats and how they drive virus evolution will help scientists to investigate the function of antimicrobial peptides in these species.


Subject(s)
Cathelicidins/chemistry , Cathelicidins/pharmacology , Chiroptera/genetics , Spike Glycoprotein, Coronavirus/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Cathelicidins/genetics , Cathelicidins/metabolism , Computational Biology/methods , Computer Simulation , Genome , Molecular Docking Simulation , Phylogeny
13.
Eur J Endocrinol ; 183(5): R133-R147, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-695333

ABSTRACT

The SARS-CoV-2 virus responsible for the COVID-19 pandemic has generated an explosion of interest both in the mechanisms of infection leading to dissemination and expression of this disease, and in potential risk factors that may have a mechanistic basis for disease propagation or control. Vitamin D has emerged as a factor that may be involved in these two areas. The focus of this article is to apply our current understanding of vitamin D as a facilitator of immunocompetence both with regard to innate and adaptive immunity and to consider how this may relate to COVID-19 disease. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that portends some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. Moreover, cardiac and coagulopathic features of COVID-19 disease deserve attention as they may also be related to vitamin D. Finally, we review the current clinical data associating vitamin D with SARS-CoV-2 infection, a putative clinical link that at this time must still be considered hypothetical.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Immunity, Innate/immunology , Immunocompetence/immunology , Lung/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Vitamin D/immunology , Antimicrobial Cationic Peptides/immunology , Autophagy/immunology , Betacoronavirus , COVID-19 , Defensins/immunology , Humans , Pandemics , SARS-CoV-2 , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Vitamin D/analogs & derivatives , Cathelicidins
14.
Front Public Health ; 8: 232, 2020.
Article in English | MEDLINE | ID: covidwho-635827

ABSTRACT

Vitamin D deficiency and insufficiency (VDD) are widely recognized as risk factors for respiratory tract infections. Vitamin D influences expression of many genes with well-established relevance to airway infections and relevant to immune system function. Recently, VDD has been shown to be a risk factor for acquisition and severity of COVID-19. Thus, treating VDD presents a safe and inexpensive opportunity for modulating the severity of the disease. VDD is common in those over 60 years of age, many with co-morbid conditions and in people with skin pigmentation sufficient to reduce synthesis of vitamin D. Exposure to fine particulate air pollution is also associated with worse outcomes from COVID19. Vitamin D stimulates transcription of cathelicidin which is cleaved to generate LL37. LL37 is an innate antimicrobial with demonstrated activity against a wide range of microbes including envelope viruses. LL37 also modulates cytokine signaling at the site of infections. Fine particles in air pollution can interfere with LL37 destruction of viruses and may reduce effective immune signaling modulation by LL37. While vitamin D influences transcription of many immune related genes, the weakened antimicrobial response of those with VDD against SARS-CoV-2 may be in part due to reduced LL37. Conclusion: Vitamin D plays an important role reducing the impact of viral lung disease processes. VDD is an acknowledged public health threat that warrants population-wide action to reduce COVID-19 morbidity and mortality. While vitamin D influences transcription of many immune related genes, the weakened antimicrobial response of those with VDD against SARS-CoV-2 may be in part due to reduced LL37. Action is needed to address COVID-19 associated risks of air pollution from industry, transportation, domestic sources and from primary and second hand tobacco smoke.


Subject(s)
Air Pollutants , Antimicrobial Cationic Peptides , Antiviral Agents , COVID-19/etiology , Particulate Matter , Vitamin D Deficiency/complications , Humans , Immune System , SARS-CoV-2 , Cathelicidins
15.
Nutrients ; 12(4)2020 Apr 19.
Article in English | MEDLINE | ID: covidwho-71940

ABSTRACT

The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production. Both types of datasets allowed the categorization of the vitamin D target genes into three groups according to their role in (i) acute response to infection, (ii) infection in general and (iii) autoimmunity. In conclusion, 15 genes were identified as major mediators of the action of vitamin D in innate and adaptive immunity and their individual functions are explained based on different gene regulatory scenarios.


Subject(s)
Adaptive Immunity/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Receptors, Calcitriol/physiology , Vitamin D/genetics , Vitamin D/immunology , Activin Receptors, Type II , Antimicrobial Cationic Peptides , Autoimmunity/genetics , Autoimmunity/immunology , CCAAT-Enhancer-Binding Protein-beta , Datasets as Topic , Fibronectins , Humans , Leukocytes, Mononuclear/immunology , Lipopolysaccharide Receptors , Membrane Glycoproteins , Receptors, Complement , THP-1 Cells/immunology , Transcriptome , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL